[image: image2.png]ARTIFA X

[image: image3.png]=lox|

| g Edt mew mepor pel [t ox Report Edtor - Arrengemer
|IDSR | $mB%% »| &g D&

B Arrangement Information

[image: image4.png]

An Introduction to SQL

In order to write an Artifax Report it is important to have a grasp of Structured Query Language (SQL). These examples use the Doggies database (available on request from Artifax Software)

Simple Queries

The simplest query looks at the contents of a single table. The example below looks at the Doggies table (the table specified in the FROM clause) and outputs the contents of one of the fields (specified in the SELECT clause).

SELECT

Doggies.DogDescription

FROM

Doggies

An alternative would be to select all of the fields from the table by using * in the SELECT clause.

SELECT

*

FROM

Doggies

Slightly Less Simple Queries using WHERE Clause

In reality we usually want to specify the data in our query. A list of all of the doggies in the database is only of limited use. We need a WHERE clause. In the example below we will produce a list of doggies which have the word ‘Mr’ in their names (e.g. 'Mr Man', Mr Kipling')

SELECT

*

FROM

Doggies

WHERE

Doggies.DogDescription LIKE '%Mr%'

Additional criteria can be added to the WHERE clause to refine the search further using AND or OR. The following query will find all doggies with ‘Mr’ in the name which were born in 2001 or 2002.

SELECT

*

FROM

Doggies

WHERE

Doggies.DogDescription LIKE '%Mr%'

AND

(Doggies.BirthYear = 2001

OR

Doggies.BirthYear = 2002)

Tidying up Queries using ORDER BY

Lists of data are usually ordered by the ID numbers of the selected database rows (in our case the DogID). It is always a good idea to specify the order using an ORDER BY clause. The example below will order by year of birth, then dogs of the same age will be ordered by name.

SELECT

*

FROM

Doggies

ORDER BY

Doggies.BirthYear,

Doggies.DogDescription

If you want the results with the youngest dog at the top, use DESC.

SELECT

*

FROM

Doggies

ORDER BY

Doggies.BirthYear DESC,

Doggies.DogDescription
Limiting Results Using TOP and DISINCT

The SELECT clause has a couple of useful options. You can specify the maximum number of records using TOP.

SELECT TOP 5

*

FROM

Doggies

You can avoid ‘double entries’ using DISTINCT. In this example you will get a list of dog names, with each name only appearing once.

SELECT DISTINCT

Doggies.DogDescription

FROM

Doggies

Please note that the following query will produce a row for each different dog name and each birth year. So if you have 100 dogs called Snoopy and their birth years range from 2000 to 2002 you will end up with 3 rows.

SELECT DISTINCT

Doggies.DogDescription,

Doggies.BirthYear

FROM

Doggies

If you which to include an ORDER BY clause with DISTINCT, the fields to be ordered by must be included in the SELECT clause.

Joining Tables Together Using a JOIN

Tables in a relational database it is necessary to link tables together. This is done using a JOIN in the FROM clause. The JOIN must link the tables using data which they have in common. In this example, the OwnerID in the Doggies table and the OwnerID in Owners.

SELECT

Doggies.DogDescription,

Owners.OwnerDescription

FROM

Doggies

INNER JOIN Owners ON Doggies.OwnerID = Owners.OwnerID
If we also want to get breed details we can add another table with another join.

SELECT

Doggies.DogDescription,

Owners.FirstName,

Owners.LastName,

Breeds.BreedDescription

FROM

Doggies

INNER JOIN Owners ON Doggies.OwnerID = Owners.OwnerID

INNER JOIN Breeds ON Doggies.BreedID = Breeds.BreedID

The INNER JOIN will only produce a row if the tables can be linked (in the example above, only dogs with owners will be listed). To include dogs with no owner, then use a LEFT JOIN.

SELECT

Doggies.DogDescription,

Owners.FirstName,

Owners.LastName,

Breeds.BreedDescription

FROM

Doggies

LEFT JOIN Owners ON Doggies.OwnerID = Owners.OwnerID

INNER JOIN Breeds ON Doggies.BreedID = Breeds.BreedID

Calculating Using Aggregate Functions

These allow you to summarize data from your tables .There are several built-in functions that can aid you in summarizing your data. COUNT can be used to count the number records in a table.

SELECT

COUNT(*)

FROM

Doggies

WHERE
Doggies.BirthYear = 2001

The SUM function can total a field of numeric values. To find out how much income we have had from class bookings for customer Simpson:

SELECT

SUM(Amount)

FROM

ClassBookings

INNER JOIN Owners ON ClassBookings.OwnerID = Owners.OwnerID

WHERE

Owners.LastName = 'Simpson'

Use the MAX function return the most lucrative Simpson booking.

SELECT

MAX(Amount)

FROM

ClassBookings

INNER JOIN Owners ON ClassBookings.OwnerID = Owners.OwnerID

WHERE

Owners.LastName = 'Simpson'

Use the MIN function return the cost of the cheapest class

SELECT

MIN(Amount)

FROM

ClassBookings

Use the AVG function return the average income for class bookings.

SELECT

AVG(Amount)

FROM

ClassBookings

Using GROUP BY for Better Statistics

Combining aggregate functions with GROUP BY gives you a breakdown of figures. To get a list of class dates with accompanying number of bookings on that date, simply group by the date.

SELECT

Classes.ClassName,

Classes.ClassDate,

Count(*)

FROM

ClassBookings

INNER JOIN Classes ON ClassBookings.ClassID = Classes.ClassID

GROUP BY

Classes.ClassName,

Classes.ClassDate
Please note: it isn’t necessary to include the ClassDate in the SELECT statement, although if you don't then it will give total attendance regardless of date.

Using CASE

Using CASE allows you to manipulate data and is extraordinarily useful. The syntax is (sections with square brackets are optional):

CASE

WHEN something is true THEN do this

[[WHEN something else is true THEN do that] [...]]

[ELSE do the other]
END
One example would be to translate a checkbox in the events table into words. Note that a checkbox with a tick has a value of -1 and without a tick is 0.

SELECT

CASE
WHEN ClassBookings.Paid = -1THEN 'Paid'

ELSE 'Not paid'

END,

ClassBookings.Amount,

Owners.Lastname,

Classes.ClassName,

Classes.ClassDate

FROM

ClassBookings

INNER JOIN Classes ON ClassBookings.ClassID = Classes.ClassID

INNER JOIN Owners ON ClassBookings.OwnerID = Owners.OwnerID

A more complicated example would be to categorise classes by when they took place. Please note that GetDate() is a function to generate today’s date.

SELECT

Classes.ClassName,

Classes.ClassDate,

CASE
WHEN Classes.ClassDate = GetDate() THEN 'today'

WHEN Classes.ClassDate < GetDate() THEN 'in the past'

WHEN Classes.ClassDate > GetDate() THEN 'in the future'

ELSE 'date not known'

END

FROM

Classes

The Artifax Report Writer – Getting Started

The Artifax Report Writer allows SQL queries to feed into Rich Text Format documents. An Artifax Report for OPAS consists of three components, the Artifax Report Script (.ars file), the Rich Text Format template (.rtf file) and the OPAS Report file (.rep file). Make sure each file has the same name, and include the main table it will be looking at in the name, to provide a reminder for what the report does – rather useful as your report library grows! For example:

aDates_my_weekly_schedule.ars

aDates_my_weekly_schedule.rep

aDates_my_weekly_schedule.rtf

Any reports you create need to be saved in the REPORT_ART_CUSTOMIZED directory on the server.

Creating the Artifax Report Script and RTF Template

To create a new report, open the report writer and select ‘File’ and ‘New’. Once you have named the report, create a new rtf document with the same name (the name doesn’t have to be the same, but it makes sense to do this).

Both of the files should be installed into the ReportsSQLServer directory on the server.

Creating the OPAS Report File

The .rep file is what makes your report appear in the right place within OPAS. You can either copy an existing REP file for a similar report and edit it, or create a new one – it’s often easier to copy.

In OPAS, go to System and Edit Reports and press the New+Copy button on an appropriate report. Complete the fields as follows:

On the MAIN tab:

Window:
Where the report will be launched from, e.g. aDates.

Source Table:
This is often the same as Window – if so, it still needs to be completed! .

Report Name:
The name of the report, as you want it to appear on the list, eg “My Weekly Schedule”

Report File:

The name of the .ars file

Query File:

This should be AR. Ensure the Query checkbox is ticked.

Definition File:
This is the what the .rep file will be saved as. It should be the same as the report file. The convention is to enter it in upper case – this makes the rep files easier to pick out on the server.

On the ADDITIONAL DATA tab:

Notes:
These will appear on the list of reports, so that users can check they are running the appropriate report

Other languages:
Complete as appropriate.

External Parameters

Almost all reports need to have parameters passed in from outside, so that the report knows which database records to include. In the properties of the document section is a tab marked Parameters.

Click on this tab to set parameters to be passed to the report.

OPAS will report on the results of the Filter you have run, so the only parameter we need to add is one that finds out the IDs for the filtered records. To do this, add the parameter SQLSubQuery.

You can then use this in your report by saying, for example,

WHERE aDates.ID IN(@@SQLSubQuery)

Which will return all filtered dates. Of course, you can then make other exclusions, but is essential to have this as a starting point.
The Artifax Report Writer – Writing the Report

The Top Level Query

The top level query is the query which appears on the right hand pane when the report is opened. If this query produces one result, then one RTF document will be produced. If it produces more than one, then more than one RTF documents will be produced and if it produces no results, then the report will fail.

If the top level is left blank, then one RTF document will be produced when the report is run.

Any fields from the top level query can be output into the template by aliasing the field and inserting a bookmark in the template with the name of the alias. A simple top level query would be:

SELECT

CONVERT(VARCHAR, GetDate(), 103) AS Printed,
Doggies.DogDescription AS Dogname

FROM Doggies

WHERE

Doggies.DogID = @@DogID
Sections

There are 5 types of section in Artifax Reports, each of which can contain one query, and will handle the results of the query in a different way. The section types are list, group, table, code and update.

Lists
The list section makes up for one of the most frustrating omissions in SQL: there is no aggregate function to concatenate strings.

The list section concatenates the results of its SQL query, allowing you to specify a different row and field separators. It then inserts the resulting string at the bookmark with the same name as the section. Lists are particularly easy to use with tables - you don’t even need to add a bookmark once you set the columnindex on the table.

List sections can contain list, code and update type sections.

An example of a list would be

SELECT DISTINCT

Owners

FROM

Doggies

INNER JOIN Owners ON Doggies.OwnerID = Owners.OwnerID

Row and Column Separators

These properties specify the text strings to be inserted in between the fields and the rows of the query output to be made into a list. If a field is blank (null or zero length string) then no field separator will be inserted. Similarly, if the entire row is blank then no row separator will be inserted.

e.g. if your query returns the following results and your field and row separators are ‘ - ‘ and ‘, ‘ respectively, your output will be as below

	Dog
	Owner

	Mr Kipling
	Billy

	Snoopy
	Laura

	Shep
	

	Santa's Little Helper
	Bart

	Prince
	Timothy

	
	Soren

Mr Kipling - Billy, Snoopy - Laura, Shep, Santa's Little Helper - Bart, Prince - Timothy, Soren

Prefix and Suffix

These properties specify text strings to be inserted before and after the list. If the list is empty, then the prefix and suffix will not be inserted. This is so that you can have a list header as below

Dates: 1 Jan, 2 Jan, 5 Jan

without being left with a blank

Dates:

if no list items are returned, which you would get if you defined the header in the template rather than here.

Groups

The group section is the most basic and flexible of the report subsections. If a bookmark matching the group’s name exists then a copy of the contents of the group bookmark is taken for each row returned by the SQL statement. Each copy is filled with data and then put back into the document.

Any fields from the group query can be output into the template by aliasing the field and inserting a bookmark in the template with the name of the alias.
A group can contain any other section.

Updates

An update section executes an action query. This can be used, for example, to set an ‘Invoice Locked’ flag once an invoice report has executed successfully, or to create and delete temporary working tables.

An example of an update section would be to set a booking to 'paid' when printing a receipt report

UPDATE

ClassBookings

SET

ClassBookings.Paid = 1

WHERE

ClassBookings.BookingID = 8
Codes
Codes are used when a single parameter is required to be passed through to another section. This is often to ensure that a section is only run in certain conditions.

So a code section of

SELECT

COUNT(*) AS EventCount

FROM

ClassBookings

WHERE
ClassBookings.OwnerID = 2

can be used to pass through the number of bookings for an owner with subsequent sections behaving differently depending on the result.

For example

SELECT

'You are entitled to for a bulk discount of 10% because you have booked ' + CONVERT(VARCHAR, ||EventCount||) + ‘ classes'

FROM

Owners

WHERE
||EventCount|| >= 5
Tables

The table section provides an easy and quick way of formatting the output of a record set and displaying it in tabular form on the document. A table can contain a group or (most likely) a list section.

The table section is probably the simplest to use in its most basic form, but has the most scope for getting very complicated!

The table is different from other section types in that you do not need to add bookmarks specifying where the field output should be inserted. Unless specifically told not to using a formatting attribute, every field selected in the SQL query is output to the table. The report inserts the field value, moves to next cell, inserts a field value, moves to next cell, etc. When it gets to the last record in a row in the query output it does not move to the next row in the table. This means that if the query returns 3 fields, and your table has 4 columns, it will look like this:

	1
	2
	3
	1

	2
	3
	1
	2

	3
	
	
	

This can be useful: a table one column wide or tables where the number of columns divides or is divisible by the number of fields can be very effective. For example the following query could be combined with a 2 column table for a very basic What’s On report as below

SELECT

Classes.ClassDate,

Classes.ClassName,

‘‘,

Classes.ClassDescription,

‘‘,

‘‘

FROM

Classes

	1 June
	Basic Dog Manners

	
	Teach your dog to sit and stuff

	
	

	7 June
	Advanced Dog Manners

	
	Playing dead and jumping through hoops

	
	

	1 July
	Basic Dog Manners

	
	Teach your dog to sit and stuff

On the other hand, totals will not work correctly unless the table columns match the number of fields.

Totals

Any field selected by the query that is aliased to ‘TOT_fieldname’ will be totalled and output below the last row of the table. This only works for numeric data types.

SELECT

ClassBookings.Amount AS TOT_ClassCost

FROM

ClassBookings

Gap before totals

Set this in the table properties how far below the last row of the table the totals are output.

Totals Text

If totals are being generated then you may want explanatory text to appear in the row of the table containing the totals, either in the cell containing the total, or the first cell of the row, or whatever.

To do this:

Add an expression to the Field Formatting section of the table properties (see section on field formatting below)

Fill in the field name / index

· (ignore the scope)

In the Attributes text box type

TOTALS| whatever text you want to appear

Heading Height

This property refers to how many rows down the table the output will start. Setting heading height to 1 allows you fill the first row of the table with column headings. Do not set heading height to be greater then or equal to the number of rows in the table in the source template.

Transform Table

If this property is set to true, then instead of going ‘insert value, next cell, insert value, next row’ it goes ‘insert value, next row, insert value, next row’(i.e. it swaps the rows and columns). In this case is does increment the column and return the row to 1 when you reach the last field in a record from the query. This would be useful if you wanted to have owner names across the top of a two row table with a list of dogs in a list in the second row.

Table query (parent)

SELECT

Owners.OwnerName,

Owners.OwnerID AS TheOwner

FROM

Owners
List query (child with columnindex 2)

SELECT

Doggies.DogDescription

FROM

Doggies

WHERE
Doggies.OwnerID = || TheOwner ||

Subsections of tables

Tables can contain update, code and list sections.

Any subsection of the table must have the columnindex property set. The columnindex refers to the position of the field in the query rather than the column of the table (you need to be aware of this if any fields are set to NoOutput (see field formatting).

Finding your table

The following algorithm is used to identify the table in the template to direct output to:

If a bookmark matching the table’s name exists then the table used will be the first one following the bookmark.

If no matching bookmark exists, then a table will be picked by Artifax Report, with unpredictable effects. It should be OK if there is only one table, but otherwise you should specify which table you mean more precisely.

Editing Section Properties

To open the properties page of a report or a section of a report, click on the appropriate part of the tree view, and either

press the [image: image1.png]

 button.

right click on the section name and choose ‘Properties’.

Columnindex

If a section is contained in a table or a list then you must specify which column of the parent the sub section belongs to.

The columnindex is a number referring to the column into which the section is to go. In the example below, we have a table with event information containing a list of dogs. The columnindex for the list of dogs is 4.

	Date
	Course
	Details
	Dogs

	1 June
	Basic Dog Manners
	Teach your dog to sit and stuff
	Porgy

Lassie

The columnindex applies only the level directly below the table: if table contains a group containing a list, then only the group and not the list need columnindex set.

NB For versions of Artifax Report earlier than 4 (ie where Artrep.exe rather than ArtifaxReportEditor.exe is used), the columnindex number must be increased by 1. This would make the columnindex value 5 for dogs in the example above.

Field Formatting

The formatting properties of the output for the report can be changed depending on the field values. It is possible for example to turn a row of a table bold if a booking is in a particular room.

To do this:

Add an expression to the Field Formatting section of the table properties

Fill in the field name / index (the drop down list of field is there to help you, but do not rely on it too much. It is safer to refer to the field by its index number)

Set the scope to Cell

In the Attributes text box type the criteria followed by the formatting:

Like Lassie |BOLD

Delete if empty

If a section’s SQL statement returns no rows then it is possible either to leave the empty section in the template, or to remove it entirely. You can supply an alternative text string to be inserted where the section was if it is deleted.

Other Useful Features

Grand Totals

If there is a bookmark in the template called GRTOT_fieldname, then the bookmark will be filled with the grand total of every occurrence of fieldname selected in any SQL query. This only works for numeric data types.

Comments

Any text in the SQL statement between <!-- and --> will be parsed out.

Parameters

Internal Parameters

It is also possible (and often necessary) to pass parameters between the separate queries that go to make up a report. Suppose a you had two queries:

Parent:
SELECT FirstName FROM Owners

Child:
SELECT DogDescription FROM Doggies

you could reference the relevant arrangement by passing the number down to the child query. You need to alias the field which you want to pass down, then refe to that alias in the child query. You do this by enclosing the name of the alias in pipes, like ||this||.

Parent:

SELECT

FirstName,

OwnerID

FROM

Owners

Child:

SELECT

Doggies.DoggieDescription

FROM

Doggies

WHERE

Doggies.OwnerID = ||OwnerID||

Parameters work with text substitution, plain and simple. If you are going to pass a date in this way, bear in mind that TransactSQL likes its dates in ‘20041027’ format.

The recommended (but certainly not the only) way to pass a date is:

Parent:
CONVERT (VARCHAR, AllDates.CurrentDate, 112) AS TheDate

Child:
CONVERT (DATETIME, ‘||TheDate||’)
Field Aliases

Sometimes it is useful to use field aliases. The main reasons for this are for bookmarking (a bookmark with the name of an alias in the template will insert the value of a field from a top level or group section), passing through as parameters (see above), totalling (see above) or for field formatting.

Field Formatting

Generally SQL will return a field value in as simple format as possible. If a value of 200 is stored in the database, then "200" is returned, equally 200.5 will return "200.5" and 200.55 returns "200.55". This seems fine at first glance, but if they are all currency sums we do not really want to see:

200

200.5

200.55

we want to see:

£200.00

£200.50

£200.55

This is achieved by formatting the output as currency. Sometimes this formatting may be achieved directly in SQL it is often easier to add a character to the end of the field name to ensure that the result is appropriately formatted.

So if the field name ends with "_C" (e.g. Total_C) it will be formatted as a currency. The list of options, with examples, is:

	Character
	Meaning
	Sample

	_C
	Currency
	$100.00

	_F
	Fixed
	100.00

	_P
	PerCent
	50%

	_0
	No decimal places
	100 (even if true value is 100.1234)

	_1
	Exactly one decimal place
	100.0

	_2
	Exactly two decimal places
	100.00, same as fixed

	_3
	Exactly three decimal places
	100.175

	_S
	Short Date
	12/12/1999

	_M
	Medium Date
	12 Dec 1999

	_L
	Long Date
	12 December 1999

	_T
	Medium Time
	01:25 PM

	_S
	Standard Number Format
	1 234.56

	_X
	Short Time
	13:25

	_Y
	Yes/No
	Yes

IMPORTANT NOTE ABOUT MEMO FIELDS:

If your SQL query returns a field of type Memo, and you wish to allow the Memo field to contain more than 255 characters, DO NOT alias the field type.

In any case, Memo fields are truncated to 64000 characters.
Field Attributes

Artifax Report contains facilities for formatting the output text strings after they have been selected in the SQL and before they have been inserted into the document.

Whilst you can easily make the text surrounding a bookmark bold or italic or whatever within the template, you may need to make the formatting dependent on the output of the field: red for negative numbers in a currency column, or bold for performances and not bold for other types of event. Other facilities include skipping the field entirely (In a table, every field is usually printed to the table. Even if you formatted the field as HIDDEN, or the field was a zero length string, the table column would be left blank. This is not always desirable), and blanking a field depending on the previous value of the field (so that the one side of a many to one relationship only gets printed out once, instead of once for each of the many values).

To add a formatting attribute go to the Field Formatting tab of the Properties page.

Click on Add Expression.

Click on the drop down box opposite Field. The drop down list of fields is there to help you, but do not rely on it too much. It is safer to refer to the field by it’s index number.

Choose a Scope for the formatting. This varies depending on what type of section you are dealing with - for a group it can be either text or group; for a table it can be either a row, a column or the cell.

Now fill in the Attribute box.

Syntax:

Expression|Format {, Expression|Format}

	Expression
	Describes the criteria under which the format will be applied.

	Format
	Indicates the format to apply to the text if expression is true

The Expression argument has the following syntax and parts:

Syntax:

{operator value} | NOOUTPUT | TOTALS

	Operator
	Valid operators are =, <, >, <>, <=, >=, LIKE and BETWEEN value1 AND value2

	Value
	Any text string or number that makes sense given the operator and field data type. Any occurrence of the string LASTVALUE will be substituted out for the last value of the field being referenced: so to stop a field from being displayed when it is the same as the previous value, use LASTVALUE|BLANK

TOTALS

If Expression is ‘TOTALS’ then the Format argument is treated as a string, and is output in the ‘totals’ row of a table - the final row in which totals generated by the TOT_ Formatting Code are printed

The Format argument may take the following values

BOLD

ITALIC

UNDERSCORE

STRIKE

ALLCAPS

RED

GREY (or GRAY)

WHITE

GREEN

BLUE

CYAN

HIDDEN

FONTNAME {name}

FONTSIZE {size}

BLANK

NOOUTPUT
BLANK v.NOOUTPUT

If the value is BLANK an empty cell will appear in a table, whereas NOOUTPUT will replace the value with a NULL.

FontName and FontSize must be followed by {Parameter}, which is the name of the font or the point value of the fontsize.

More than one attribute may be applied to the same value (e.g. BOLD ITALIC FONTNAME{Arial}).

More than one value may be inserted in the list

(eg Important|BOLD, Unimportant|Italic FontSize{9})

Examples:

Field:= CustomerName; Scope:= Text; Attributes:= Peter|RED

Whenever the text printed at bookmark CustomerName is "Peter" it goes red.

Field:= CustomerName; Scope:= Group; Attributes:= Peter|BOLD ITALIC

Whenever the text printed at bookmark CustomerName is "Peter" the whole Group goes bold italic.

Field:= CustomerName; Scope:= Text; Attributes:= Peter|FontSize{12}

Whenever the text printed at bookmark CustomerName is "Peter" it goes into 12pt.

Field:= CustomerName; Scope:= Text; Attributes:= Peter|RED, John|BOLD, LIKE Sara|FONTNAME{Squire}, Secret|HIDDEN

Whenever the text printed at bookmark CustomerName is "Peter" it goes red, if "John" it goes bold, if "Sarah" or "Sara" it goes into Squire font and if "Secret" it is hidden. Note that both spellings of Sara and Sarah match, because of the "LIKE" feature.

Also note that Secret|WHITE is an alternative way to achieve the same result as Secret|HIDDEN.

Field:= Profit; Scope:= Text; Attributes:= <0|RED

If the value of the text printed at bookmark Profit is less than zero it goes red. Note that there is no <= expression, so it may be necessary to put <.00001. An alternative would be Between -99999 and 0, which is inclusive of zero.

Field:= Profit; Scope:= Text; Attributes:= BETWEEN 0 AND 100|BOLD, >100|BOLDITALIC

If the value of the text printed at bookmark Profit is between 0 and 100 it goes bold, if more than 100 it goes bold italic. Note that the lower number must come first in a Between...And statement; Between 0 and -99 will never produce a result, because the result would have to be both greater than zero and less than -99, an impossibility.

Field:= StartDate; Scope:= Text; Attributes:= BETWEEN 1/1/2006 AND 31/12/2006 |UNDERSCORE

Dates may be entered in any recognizable format, including 1/1/2006, 01/01/06, 1 Jan 2007, Jan 1 2007, 1 January 2007 etc. Two number years are interpreted to lie in the range 1980 to 2079. A nonexistent date, such as 29 Feb 1997, produces an error.

Templates

Each Artifax Report uses an RTF template to format the final output. The template is linked to the report by bookmarks. In general, for a report section to produce output the template must contain a bookmark with the same name as the section. Each different type of report section produces different types and formats of output, and use the template and bookmarks in different ways.

Groups

The section of template contained in the group bookmark is repeated once for each row returned by the Group query. If there is a bookmark within the group bookmark with the same name as a field selected by the group query, then the value of that field for that row is inserted over the bookmark.

Tables

The first Table following the start of the table bookmark is filled with the data selected by the table query. Note that if a table in the report is not bookmarked, the contents will be inserted into the first table in the template.

Lists

The List bookmark is overwritten by the output of the list section.

Codes and Updates

Code and Update: neither of these sections affect the template at all, and therefore do not have any use for bookmarks.

It is possible for a section to produce output without a bookmark in the template: if the section is a subsection of a table or a list the columnindex property (see above) is used to determine which column of the table or position in the list the section output is inserted.

Important!

There are several important considerations to keep in mind when designing your template:

If an area of the template is selected by a section (the extent of a group bookmark, or a table), then any subsections can only ‘see’ that area - not the whole template

How to add a bookmark to a Word Template.

To enter a bookmark placeholder (i.e. just a position within the document.)

Open the Template in Word

Place the insertion point (Cursor) where you want the field to appear.

Select Insert|Bookmark from the menus

Type the name of the bookmark (the field name or alias to be displayed).

Press Add

To enter a bookmark with extent (i.e. to encompass a Group, the Header or Footer)

Open the Template in Word

Place the insertion point (Cursor) at the beginning of the bookmark.

Drag the insertion point to the end of the bookmark, so that the extent of the bookmark is highlighted.

Select Insert|Bookmark from the menus

Type the name of the bookmark.

Press Add

Remember that a bookmark can contain other bookmarks, which is how Groups, the Header and Footer work.

Also, it is not necessary to include bookmarks for all fields. Some fields are included only to act as a link to other SQL statements. That’s fine...just don’t put them in the Template.

You can choose whether bookmarks are displayed in the template using the Tools|Options|View and checking the Bookmarks check-box.

Bookmarks can be formatted for font, size, style etc. just like text, and the formatting will be reflected in the text placed at the bookmark by Artifax Report.

The Database Structure

The OPAS database is pretty big and complicated. It can be daunting to first time report writers. This section is designed as an introduction to the core tables and contains edited highlights of the tables and ways in which they link together. It is not a full data model by any means.

aDates

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDate_Works.Date_ID
	Unique identifier

	Date_
	DateTime
	
	

	Start_
	DateTime
	
	

	Project_ID
	Int
	sProjects.ID
	Link to Project

	EventType_ID
	Int
	sEventTypes.ID
	Link to Activity

	Location_ID
	Int
	sAddresses.ID
	Link to Venue

	Conductor_ID
	Int
	sAddresses.ID
	Link to Conductor

	Orchestra_ID
	Int
	sAddresses.ID
	Link to Orchestra

	Text
	Char(200)
	
	Text field

	l_print_details
	Logic_n
	
	Print Details flag (value of 1 marks it as selected)

aDate_Works

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDateWork_Soloists.DateWork_ID
	Unique identifier

	Date_ID
	ID
	aDates.ID
	Link to Date

	Work_ID
	ID
	sWorks.ID
	Link to Work

	Title2
	Char(254)
	
	Text field for alternative title

	Flute_Text
	Char(80)
	
	Text field for Flute

	Flute
	Int
	
	Number

sWorks

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDate_Works.Work_ID
	Unique identifier

	Composer_ID
	ID
	sComposers.ID
	Link to Composer

	l_intermission
	Logic_n
	
	Intermission flag

	Flute_Text
	Char(80)
	
	Text field for Flute

	Flute
	Int
	
	Number

aDateWork_Soloists

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	
	Unique Identifier

	DateWork_ID
	ID
	aDate_Works.ID
	Link to DateWork

	Artist_Order
	Int
	
	Order for soloist for that Work

	Artist_Order2
	Int
	
	Order for soloist for that Programme (where Show All is pressed)

	Artist_ID
	ID
	sAddresses.ID
	Link to Soloist details

	Instrument_ID
	ID
	sInstrInstruments.ID
	Link to the Instrument

sEventTypes

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDates.EventType_ID
	Unique identifier

	Code
	Char(10)
	
	Code

	Name
	Char(40)
	
	Activity Name

	Name2
	Char(40)
	
	Alternative name

	L_performance
	Logic_n
	
	Performance flag

	Group_ID
	ID
	sEventTypeGroups.ID
	Link to Activity Group

sProjects

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDates.Project_ID
	Unique identifier

	Name2
	Char(60)
	
	Alternative name

sSeries

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDate_Series.Series_ID
	Unique Identifier

	Code
	Char(10)
	
	Code

	Name
	Char(40)
	
	Series Name

aDate_Series

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	
	Unique Identifier

	Date_ID
	ID
	aDates.ID
	Link to Date

	Series_ID
	ID
	sSeries.ID
	Link to Series

sAddresses

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	aDates.location_ID
	Unique Identifier

	Name1
	Char(60)
	
	Company/Last Name

	Name2
	Char(40)
	
	First Name

	Street
	Char(40)
	
	1st line of address

	PoBox
	Char(40)
	
	2nd line of address

	Place
	Char(40)
	
	City

	State
	Char(40)
	
	County

	ZipCode
	Char(10)
	
	Postcode

sAddress_Numbers

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	
	Unique Identifier

	Address_ID
	ID
	sAddresses.ID
	Link to Address

	Number_
	Char(100)
	
	Phone Number/Email Address

	NumberType_ID
	ID
	sNumberTypes.ID
	Link to Number Types

aDuties

	Field
	Data Type
	Commonly Links to
	Comments

	ID
	ID
	
	Unique Identifier

	Date_ID
	ID
	aDates.ID
	Link to Date

	Artist_ID
	ID
	sAddresses.ID
	Link to player

	Instrument_ID
	ID
	sInstrInstruments.ID
	Link to Instrument

	DutyType_ID
	ID
	sDutyTypes.ID
	Link to Presence Type

Tips, Tricks and Bits to Copy & Paste

Once you have mastered the basics, there is more SQL code than is contained in this manual to help you refine your reports. For example, the following code will omit the name of the City, if it is also contained in the name of the Venue. For example, the Epsom Playhouse is in Epsom, but we’d rather print “Epsom Playhouse” than “Epsom Playhouse, Epsom”.

CASE
WHEN LEN(REPLACE (sAddresses.Name1,sAddresses.Place,'')) < LEN(sAddresses.Name1)

THEN sAddresses.Name1

ELSE rtrim(sAddresses.Name1) +

 END

Try to keep a copy of the statements you may need to recycle for other reports, and save your brain-power for new SQL challenges! Open a report that has been written for you, and see what tricks you can learn from other report writers.

Aliasing a Table

As we have seen the sAddresses table is linked to the aDates table for the venue, the conductor and the orchestra. To get the names of all of them from the one query, you need to use a table alias:

SELECT

RTRIM(Venues.Name1),

RTRIM(Conductors.Name1),

RTRIM(Orchestras.Name1)

FROM

aDates LEFT JOIN sAddresses AS Venues ON aDates.location_ID = sAddresses.ID

LEFT JOIN sAddresses AS Conductors ON aDates.conductor_ID = sAddresses.ID

LEFT JOIN sAddresses AS Orchestras ON aDates.orchestra_ID = sAddresses.ID

Using RTF code

As well as using field attributes (see earlier in the manual for details) you can format text using the rich text format codes. For example, to make the Last Name field in bold, put

'{\b ' + RTRIM(sAddresses.Name1) + '}'

The space after the b is very important - if you forget to do this, the name
will be printed as blank! You must also remember to close the bracket at the
end of the selection, else the template will become corrupt. The formatting
must be applied to each field separately.

The code for italic would be

'{\i ' + RTRIM(sAddresses.Name1) + '}'

Font sizes are controlled as

'{\fs22 ' + RTRIM(sAddresses.Name1) + '}'

fs22 would produce an 11point font size - this allows for half-point
formatting, as 11.5 would be fs23.

Rtf code can be applied in one string, for example to make something 11pt,
bold and italic, you would write

'{\fs22\b\u ' + RTRIM(sAddresses.Name1) + '}'

It is especially useful if you want a field to be bold based on the properties of another field. So if I want a list of concerts with performances in our main venue in bold:

SELECT

CASE WHEN aDates.Location_.ID = 23 THEN ‘{\b ‘ + sAddresses.Name1 + ‘}’

ELSE sAddresses.Name1

END

FROM

aDates LEFT JOIN sAddresses ON aDates.Location_ID = sAddresses.ID

If you need to know other RTF commands, such as underline, superscript, allcaps etc, the easiest way to find them out is to create an RTF document containing a series of words with formatting applied (eg write the word underline, and make it underlined, write the word bold and make it bold) and then open the RTF file with a text editor such as Notepad.
Concatenating Strings

As we’ve just seen, sometimes the field from the database just isn’t enough, so you need to concatenate. This means mixing the field information with additional text.

SELECT

‘The concert is in ‘ + sAddresses.Name1

FROM

aDates LEFT JOIN sAddresses ON aDates.Location_ID = sAddresses.ID

Dates and Times

Today

If you want to insert the current date and time, just use GetDate(). So for the date of a concert and today’s date:

SELECT

GetDate(),

aDates.Date_

FROM

aDates

Formatting Dates and Times

If you want your dates and times looking nice (rather than a date of ‘20041005 19:01:26’), you need to combine converting datatypes (in this case DateTime to Char) and concatenation. This is best illustrated by example:

Dates

convert(char,getdate(),106)

05 October 2004

convert(char, GetDate(),103)

15/10/2004

DATENAME(d, GETDATE())

5

DATENAME(dw, GETDATE())

Tuesday

DATENAME(m, GETDATE())

October

DATENAME(yyyy, GETDATE())

2004

Times

convert(char,GetDate(),108)

19:01:26

LEFT(convert(char,GetDate(),108),5)

19:01
The Grand Finale
'It is ‘ +

DATENAME(dw, GETDATE()) +

' ' + DATENAME(d, GETDATE())+

' ' + DATENAME(m, GETDATE())+

' ' + DATENAME(yyyy, GETDATE())+

' and I have finished writing the report manual'

It is Tuesday 5 October 2004 and I have finished writing the report manual

Report Writing Basics�2007-10-30

PAGE

